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Logistic map: A possible random-number generator
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The logistic map is one of the simple systems exhibiting order to chaos transition. In this work
we have investigated the possibility of using the logistic map in the chaotic regime (LOGMAP) for a
pseudorandom-number generator. To this end we have performed certain statistical tests on the series
of numbers obtained from the LoGMAP. We find that the LOGMAP passes these tests satisfactorily
and therefore it possesses many properties required of a pseudorandom-number generator.

PACS number(s): 05.45.+b, 05.20.—y, 01.50.Ht, 02.70.Lq

I. INTRODUCTION

A sequence of numbers that are chosen at random are
useful in many different kinds of applications such as sim-
ulation, sampling, numerical analysis, decision making,
recreation, etc. A sequence of truly random numbers
is unpredictable and hence unreproducible. Such a se-
quence can only be generated by a physical process, for
example, radioactive decay, thermal noise in electronic
devices, cosmic ray arrival time, etc. In practice, how-
ever, it is very difficult to construct physical generators
that are fast enough and at the same time accurate and
unbiased. Furthermore, one would like to be able to re-
peat the calculation at will, for debugging or develop-
ing the program. Thus, for most calculational purposes,
pseudorandom numbers (PRN) have been introduced.
Pseudorandom numbers are numbers computed from a
deterministic algorithm (hence, it is called pseudorandom
or quasirandom) and therefore reproducible. Obviously,
these are not at all random in the mathematical sense,
but are supposed to be indistinguishable from a sequence
generated truly randomly. A good PRN generator should
possess long period, high speed, and randomness.

Over the years, various PRN generators have been de-
veloped and can be broadly classified into the following
categories [1]: (i) linear recurrence methods, (ii) multi-
plicative congruential generators, (iii) Tausworthe gener-
ators, and (iv) combination generators. All these are bit
based generators. These methods have various parame-
ters or inputs and the period and the statistical proper-
ties of PRN sequences sensitively depend on these param-
eters. The first two are known to have periods of about
~ 10° on a 32-bit machine. In the other two methods
one can achieve a much larger period (~ 1017°) [1].

It is not easy to invent a foolproof source of ran-
dom numbers. Generally, a number of tests [2] are per-
formed to test the randomness of the numbers gener-
ated by PRNs. In spite of these tests, one finds that a
PRN that has passed these tests may fail when applied
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to some physical applications: For example, in a recent
study, Ferrenberg, Landau, and Wong [3] have shown
that even the high quality PRNs are biased under cer-
tain circumstances. Extensive Monte Carlo simulations
by this group on an Ising model, for which exact an-
swers are known, have shown that ostensibly high qual-
ity random-number generators may lead to subtle, but
dramatic, systematic errors for some algorithms, but not
others. They traced the discrepancy to the correlations
in the random numbers. Another recent study by Vat-
tulainen et al. [4] find no such correlations. This only
means that what is “random” enough for one application
may not be random enough for another. The important
criterion is that a specific algorithm must be tested to-
gether with the random-number generator being used re-
gardless of which tests the generator has passed. This be-
ing the scenario, it may be useful to consider PRNs based
on algorithms different from conventional algorithms. In
the present work, we discuss a PRN generator based on
an inherently chaotic (random) algorithm and its statis-
tical properties. Here we have employed the logistic map
in the chaotic regime as a PRN generator. We feel that
such an effort is useful because it provides an entirely dif-
ferent method of producing PRNs. Also, the algorithm
used is very simple, so the generator is quite fast. There
have been earlier attempts to use the logistic map as a
random-number generator. Ulam and von Neumann [5]
studied the logistic map and noted that by appropriate
transformation, the numbers from the logistic map can
be converted to a sequence of random numbers uniformly
distributed in the interval (0,1). Collins et al. [6] applied
logit transformation on the logistic map and generated a
near-Gaussian distribution. Peng et al. [7] used the logis-
tic map in the chaotic regime to calculate the properties
of a well known random process: the invasion percola-
tion problem. In this study, it was found that the static
properties of percolating clusters, except for the percola-
tion threshold, are correctly calculated but the dynamical
properties are not. It is not clear from this work if this
difference is due to nonuniform nature of the distribution
or due to the correlation between successive numbers.
The method we are adopting here differs from the earlier
calculations in two respects. In the earlier works, the ran-
dom numbers were drawn from the logistic map, which is
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. . . ~ 1 . .
known to have a distribution of 7\/;71—_7) and is used in

the simulation studies. We use a simple transformation
to convert this distribution into a uniform distribution.
Also, the earlier calculations make no attempt to either
remove or study the effects of the correlations that exist
between succesive numbers generated by the logistic map.
We have done that. Here we draw the numbers from a
uniform distribution (see below) and investigate the sta-
tistical properties. Our calculations show that the period
of such a generator is of the order of 108 (although theo-
retically infinite) if the computations are done in double
precision. This can be enhanced further if the quadruple
precision is employed and is certainly larger than 10°.
Our investigation of the distribution properties of this
PRN generator show some peculiarities. These can be
cured by introducing the 7 shift (to be explained below).
In the following, we shall first describe the logistic map
and discuss the PRN generator in Sec. II. The results
of different tests performed on PRNs thus generated are
presented in Sec. III, and the conclusions are given in
Sec. IV.

II. THE LOGISTIC MAP

Chaos in dynamical systems has been investigated over
a long period of time [8]. With the advent of fast comput-
ers, the numerical investigations of chaos have increased
considerably over the last two decades and by now, a
lot is known about chaotic systems. One of the simplest
and most transparent systems exhibiting order to chaos
transition is the logistic map [9]. The logistic map is a
discrete dynamical system defined by

Tip1 = pxi(l — ), (1)

with 0 < x; < 1. Thus, given an initial value (seed) zo,
the series x; is computed. Here, the subscript ¢ plays
the role of discrete time. The behavior of the series as
a function of the parameter y is interesting. A thorough
investigation of logistic map has already been done [9].
Here, without going into detailed discussion, we simply
note the following.

(i) Equation (1) has ¢ = 0 and = = (u — 1)/ as fixed
points. That is, if z; = 0 or (u — 1)/u, then z;{; = x;.

(ii) For p < 1, z = 0 is an attractive (stable) fixed
point. That is, for any value of the seed zo between 0
and 1, z; approaches 0 exponentially.

(iii) For 1 < p < 3, z = (p—1)/p is an attractive fixed
point.

(iv) For 3 < p < 4, the logistic map shows interesting
behavior such as repeated period doubling, appearance
of odd periods, etc.

(v) For p = 4 the logistic map is chaotic.

Since the chaotic behavior of the logistic map is of
interest to us, we shall discuss the last point in detail.
If we choose two seeds zo and yo = z¢ + 6z, with iz
arbitrarily small, z; and y; differ by a finite amount for
large enough i. For example, if §z = 1072, 2; —y; ~ 0.1
for ¢ ~ 40. In fact, z; — y; grows exponentially with <
and this is the definition of chaos. An analytic solution
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of a logistic map exists for 4 = 4. If we choose z; =
[1 — cos(6;)]/2 and z;41 = [1 — cos(26;)]/2, the logistic
map for 4 = 4 can then be defined by

0. — 20;, for 0; < /2 9

17 27 — 26;, for 8; > /2. (2)
Clearly, the map in terms of 8; is given by stretching the
line of length 7 to 27 and folding it. An examination of
Eq. (2) shows that one gets periodic series if the seed
0o is a rational fraction of w. On the other hand, the
series does not have periodicity if 6y is an irrational frac-
tion. Also, for any 6y which is an irrational fraction of 7,
the set {6;} computed using Eq. (2) is distributed uni-
formly between 0 and . It is this property of the logistic
map that we intend to exploit for generating uniformly
distributed random numbers and to study its statistical
behavior.

Consider a set of numbers

1 -1
;= — 1-—2z;), 3
v = —cos™ (1~ 22,) ®)
where
Ti+1 = 4a:i(1—wi). (4)

From the discussion above, y;’s are expected to be dis-
tributed uniformly between 0 and 1, except when z; =
%, %, %, or 1. For these special values one gets pe-
riodic series. For any other rational fraction zo we do
not expect any periodicity. Thus, it appears that start-
ing with a rational fraction xo we can generate a set of
uniformly distributed numbers {y;} using Egs. (3) and
(4). Furthermore, since a small change in zo produces
large deviations in z;’s (and therefore y;’s), different ini-
tial values of z¢ differing by small amount would produce
different uncorrelated sets {y;}. This seems to be a very
good property for a random-number generator to possess.

There are, however, three difficulties to be overcome
before we can construct a random-number generator from
Egs. (3) and (4). The first is due to truncation error
in computers. We find that when the calculations are
done in single precision, z; becomes 0 after about 5000
iterations. The exact value of ¢ depends on z¢ but it is
ususally ~ 5000. The reason for this is as follows. If
z; differs from 1/2 by a small amount € (z; = 0.5 + €),
z;41 = 1 —€? and if € < 10~7, x;,, is stored as 1 in
the computer. So z;, = 0 for n > 2. This difficulty is
overcome by modifying the algorithm suitably when z;
is close to 0.5.

The second problem is related to the period of ran-
dom numbers. LOGMAP, such as most of the standard
PRN generators, suffers from the problem of periodicity.
The periodicity in LOGMAP is essentially introduced by
truncation. We have not been able to deduce theoreti-
cal estimates of the possible periods and their lengths.
We have, therefore, computed the periods occurring in
LOGMAP by starting with random seeds z¢ chosen from
another PRN generator (RANMAR—the generator pro-
posed by Marsaglia, Zaman, and Tsang [10]). The calcu-
lations have been performed with single and double pre-
cision. After 5000 calculations in double precision seven
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distinct periods were found. The longest period has a
length larger than 7 x 107 and it occurs with a frequency
of 64%. Two smallest periods have lengths smaller than
10% and they occur three times and twice. The rest of
the periods have lengths larger than 10%. There may be
periods other than the observed ones, but they are ex-
tremely rare (frequency < 2x107%). Single precision cal-
culations, which are faster, were repeated 10° times and
six periods were found. Here also, two smallest periods of
lengths 136 and 143 occur with frequencies 7 x 10™* and
4 x 107%, respectively. Thus, these calculations indicate
that the periods of LOGMAP are finite in number.

Another interesting point regarding the periodicity is
that the seeds zo generally do not belong to one of the
periodic series. In fact, we find that the LOGMAP enters a
periodic loop after 107 or more iterations. Furthermore,
the number of iterations after which the LOGMAP enters
the periodic series is different for different seeds and is not
related to the final periodic series. We believe that the
numbers belonging to periodic series should be excluded.
Thus, for a given seed, we have kept the first 107 numbers
in our analysis.

The preceding discussion clearly shows that the period-
icity in LOGMAP arises from truncation errors, although
why a particular periodic series occurs and why there are
very few periodic series present is not clear. Our conjec-
ture is that truncation errors amount to using p [of Eq.
(1)] slightly different from 4. That is, calculation of ;41
on computer is equivalent to an infinite precision calcula-
tion with g different from 4. Now, this effective value of
¢ would depend on z;. It is, however, possible that the
effective value of u in a periodic series is smaller than 4
and for that value of u the logistic map may be periodic.
The logistic map for 4 < 4 does exhibit periodicities,
but these are not stable. That is, with a small change
in p the periodicity is lost. This would mean that in a
computer calculation few periodic series will be present.
Also, a periodic series in a computer calculation results
when calculated z; belongs to one of the periodic series.
This being somewhat arbitrary, the number of iterations
after which the LOGMAP enters the periodic loop are not
fixed.

The third difficulty is that of correlation among the
successive y;’s. Equations (3) and (4) clearly show that
the succesive y;’s are correlated, although a set of y;’s are
uniformly distributed in the interval [0,1]. The standard
procedure for removing such a correlation is to shuffle the
set of numbers obtained from the logistic map [11]. Our
calculations show that the correlations have a peculiar ef-
fect on the distribution properties and these persist even
after shuffling (see below). On the other hand, the corre-
lations between two numbers y; and y;,, reduce as 7 is
increased from 1. We call these 7-shifted numbers. The
statistical tests have been performed on these 7-shifted
sets with 7 ranging from 1 to 14. The following calcula-
tions have been done in double precision.

III. STATISTICAL TESTS

In order to test the PRN generator (LOGMAP) de-
scribed in Sec. II, we have performed certain tests, for

various values of 7, described below. For comparison, we
have also done these tests on the PRN generator RAND—
available on our machine and RANMAR. These tests are
as follows.

(1) Distribution test: here we verify central limit the-
orem.

(2) Moments calculation: We have calculated (z™) and
its variance o,,.

(3) x2 test: in the one-dimensional (1D) case, we have
divided the interval [0, 1] into 7 equal bins and calculated
x2 and its distribution. For the 2D case, we have divided
the region [0,1] ® [0, 1] into n equal blocks and repeated
the calculation of x? and its distribution.

In addition, we have also performed other tests [2] such
as the run-up test, n-tuple test, etc. Results of these tests
will not be presented here. The main reason is that the
results of these tests are in concurrence with the above
mentioned tests and it will not alter our conclusions. In
the following, we report the results for LOGMAP and RAN-
MAR.

A. Distribution test

Suppose that {z;} is a sequence of mutually indepen-
dent random variables that are governed by the proba-
bility density function P(x). Then the central limit the-
orem asserts that, subject to certain conditions on the
moments of P(z) [12], the variable yy = ZzNzl x;, in the
limit of large N, is distributed normally, i.e.,

PN(y)= \/%pexp(—(y—;ﬂﬂz—)

where u = N(z) and o2 = N((z?) — (z)?).

We have obtained the distribution function of the num-
bers obtained from LOGMAP for N = 24 for various T
shifts. In Fig. 1, the solid line indicates the exact dis-
tribution and diamond dots indicate the distribution ob-
tained from the LOGMAP with 7 = 1,2, and 3 calcula-
tion. From Fig. 1, one can see that for 7 = 1 (sequential
case), the distribution from the LOGMAP is skewed a lit-
tle. Although the distribution for 7 = 2 agrees better
than the sequential case, still it is far from satisfactory.
For 7 = 3 and greater, the distribution is in excellent
agreement with the theoretical one. Thus, this test shows
that although the successive numbers are correlated, a
set of numbers obtained by picking every alternate or
every third number would behave as a set of random
numbers [13].

B. Moments

For a given set of 7-shifted N numbers generated from
LOGMAP, we calculate the nth moment (z?) as

N
@) = & Dok (5)

We then repeat this test for M such sets and caclulate

the global average (z?) and variance o, as
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T T 1 T 1
Central-Limit Theorem Verification (24 points)

2-shift

- 1 M
(7) = 37 2_ (=% (©)
1 J;Il —2
on(r) =37 2 (@7); = (@2} - (7

We have varied 7 from 1 to 14 for two different values
of N—1024 and 8096—and M is held fixed at 4000. For
random numbers uniformly distributed between 0 and 1,
Wth = %H W The results for
the PRN generator based on the logistic map are shown
in Table I.

An inspection of Table I shows that (z7) agrees well
with the theoretical values for different n’s and 7’s. The

and ot =

FIG. 1. Central limit the-
orem verification for 24 num-
bers. The figure shows the plot
of Pn(y) vs y. The solid curve
is the exact distribution Pn(y)

_ 1 (y—Nu)?
~ V2rnNo? €xp (_ 2N¢é‘ )’

where N = 24, p = 1/2, and
o = 1/12. The diamonds
with dot are obtained from the
LOGMAP with 7=1, 2, and 3 (as
indicated by the label).

18

agreement is comparable with the results of RANMAR.
But 0,,(7) departs significantly from the theoretical value
for 7 = 1, and the departure systematically increases
with the increase in m. The variance is calculated by
subtracting two almost equal numbers, so some loss of
accuracy is expected. But the departure is much larger.
On the other hand, for 7 larger than 4, the calculated
variances are close to the theoretical values and are com-
parable with those obtained from RANMAR.

C. x? test

In the 1D x? test, the interval [0,1] is divided into n
equal parts and the numbers r; falling in the ith interval,

TABLE I. (z") and o, for LOGMAP with 7 = 1,3, and 6 and RANMAR for n = 1,2,...,10.
N = 8196 and M = 4000.

n T =1 T =3 T =26 RANMAR Exact

1 (z) 0.50010 0.50006 0.50000 0.49993 0.50000

o1 0.08400 0.08460 0.08626 0.08155 0.08333

2 (:I:l) 0.33340 0.33341 0.33332 0.33324 0.33333

o2 0.03736 0.08784 0.09102 0.08736 0.08889

3 (z®) 0.25004 0.25007 0.24999 0.24991 0.25000

o3 0.01392 0.07828 0.08111 0.07964 0.08036

4 (:1:4) 0.20002 0.20006 0.20000 0.19992 0.20000

o4 0.00518 0.06839 0.07092 0.07086 0.07111

5 (11:5) 0.16667 0.16672 0.16667 0.16660 0.16667

os 0.00273 0.06002 0.06240 0.06305 0.06313

6 (1:6) 0.14285 0.14291 0.14286 0.14280 0.14286

g6 0.00276 0.05318 0.05550 0.05642 0.05651

7 (z7) 0.12498 0.12505 0.12500 0.12495 0.12500

o7 0.00363 0.04759 0.04990 0.05087 0.05104

8 (a:8> 0.11109 0.11115 0.11112 0.11107 0.11111

os 0.00469 0.04298 0.04528 0.04620 0.04648

9 (:I:Q) 0.09997 0.10004 0.10001 0.09997 0.10000

o9 0.00567 0.03913 0.04143 0.04225 0.04263
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out of a set of N numbers, are calculated. For a uniform
distribution, x? is defined by

1 n
2 _ . 2
Xn"‘N—/ﬁ;(rﬁ N/n)". (8)
The test is repeated for M such sets and the distribution
of x2 is obtained. Theoretically, the x2 thus obtained
should have a x2 distribution for n—1 degrees of freedom:
(03)"7 e xn

JDEGE) T e

The calculation is done for N = 10240, M = 4000, n is
varied from 2 to 256, and 7 is varied from 1 to 14. The
results for n = 4,64, and 256 are displayed in Figs. 2(a),

Pth(X?L) =

(9)

2(b), and 2(c). The corresponding x2 for RANMAR is also
given for comparison.

Consider 7 = 1 or the sequential case first. The cal-
culated x? distribution differs significantly from the the-
oretical one. This is somewhat surprising, since the set
of numbers obtained from the logistic map are uniformly
distributed. We have confirmed that shuffling does not
mitigate this problem. Thus, the correlations between
successive numbers are probably responsible for this be-
havior.

As 7 is increased, the agreement between calculated
and theoretical distributions improves. From Fig. 2(a),
we find that for n = 4, the 7 = 2 distribution already
agrees reasonably well with the theoretical distribution.
On the other hand, for n = 256, one gets a good agree-
ment for 7 ~ 6 or larger. This clearly shows that in order

T T T T T T T T T

4-Bins (1-dimension) (a)
$eque 2-shift 4-shift RANMAR
N N N N2
025 | —
02 | .
0.15 4
0.1 e
0.05 | .
FIG. 2. Plot of the x? dis-
) . . e N = N tribution, P(x?) vs x> for the
0 01 3 1 3 1 3 1 3 6 9 12 15 one-dimensional case. The
smooth curve is obtained from
the exact distribution, Eq. (9),
and the histogram is obtained
T T T T T 1 T T T T T
( b) from the LOGMAP and RANMAR,
64-Bins (1-dimension) labeled appropriately. (a) For 4
bins, (b) for 64 bins, and (c) for
Seque. 4-shift 12-shift RANMAR 256 bins.
d N 4
0.04 | 4
0.03 | -
0.02 4
0.01 .
0 1 1 1 1 L vy 1 1
20 40 60 80 40 60 80 40 60 80 40 60 80 100
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FIG. 2 (Continued).

T T T T T T T T
256-Bins (1-dimension) ( C )
Seque. 4-shift 12-shift RANMAR

0o L ! ) ! ! ]
0.015 |+ h
0.01 4
0.005 4

0 1 1 1 1 1 1

150 200 250 200 250 200 250 200

to have “randomness” on a finer scale (corresponding to
smaller bin size, or larger n), the 7 shift must be larger.
For the 2D x2 test, we choose a pair of succes-
sive numbers (z and y coordinates) and determine how
they are distributed in n equal-area blocks covering a
square of unit side. The x? distributions are calcu-
lated as discussed in the 1D case and the results for
n = 4,64, and 256 are presented in Figs. 3(a), 3(b), and
3(c). These results follow the same pattern as that of the
1D case with one difference. For 7 = 1, the calculated x2
distribution is nowhere near the theoretical distribution
for n > 4. This is simply because the succesive numbers
are highly correlated. This can be explained as follows.
For the sequential case, when the unit square is divided
into four equal blocks, each block would have some num-
ber of points. Hence, for n = 4, one does not expect any
abnormal behavior in the x2 distribution. However, this
is not the situation when the unit area is divided into
more than 2 x 2 blocks; it would happen that some of
the blocks do not contain any points at all. The contri-
bution of these blocks to the x? [see Eq. (3.4)] would be
N/n, thus pushing the value of x? higher. However, with
a 7 shift of 4 or larger, these correlations are more or
less wiped out and one gets reasonably good agreement
between calculated and theoretical distributions.

IV. DISCUSSION

The results of the tests performed in the preceding
section show an interesting dependence on 7 shift. This
dependence can be understood in terms of the correla-
tions between successive numbers obtained by LOGMAP.
These numbers [y;’s of Eq. (3)] are distributed uniformly
in (0,1). However, the successive numbers are correlated.
Furthermore, these correlations are diluted by introduc-
ing the 7 shift. To illustrate the dependence of these
correlations, let us consider these correlations in more
detail [14]. In particular, we shall consider the z;’s of

250 300 350

Eq. (4) instead of the y;’s, to simplify the analysis. Let
us choose two seeds, z¢ and z¢ + dzo. Using the logistic
map [Eq. (1) with p = 4], we can show that for small
enough dz;,

|6z;y1| = 4|0z;| |(1 — 2z;)]. (10)

Thus, [6z;41|/|0z;| varies between 0 (for x; = 0.5) and
4 (for z; = 0,1). Or, on the average, |6z;| = 2¢|6zo| =
|6zole!®2. In other words, as is well known, the Lya-
punov exponent of LOGMAP is In2. This is illustrated
graphically in Fig. 4, where the average of dz; for 1000
randomly chosen z¢’s is plotted against i. The slope for
small i gives the Lyapunov exponent and it is found to
be 0.301073 which is very close to log2. Furthermore,
for large %, |6z;| becomes independent of <. This happens
when i > —1In|§zo|/In2. The value of §zo is 10~7 and
the calculations were done in single precision. As can
be seen from the graph, at about ¢ ~ 23 onward, the
|6z;|’s become independent of . Similar behavior has
been observed for for |§y;| also. When the whole exercise
has been repeated for dzo = 10~ 1% and calculations were
done in double precision, similar behavior has been ob-
served, with |6z;|’s becoming independent of ¢ at about
i ~ 50 onward.

It is now clear that, depending on the given value of
dxg, if we choose 7 > —In|dzo|/In 2, the correlations be-
tween successive 7-shifted numbers are completely lost.
Thus, if we choose |dzo| ~ 1073, 7 ~ 10 would suffice.
This can be further illustrated by considering the x? test
with four bins of equal size. Consider a sample of N num-
bers obtained from LOGMAP distributed into these bins
with numbers in each bin being n; (3_n; = N). Now,
if a number z; lies in the first bin (0 < z; < 0.25), it is
clear from Eq. (1) that ;41 lies in the first or second bin.
Similarly, if z; is in the fourth bin, z;4; is in the first or
second bin. So, if we ignore the end points, the numbers
in bins 1 and 4 (n; + n4) must equal the numbers in 1
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and 2 (n1 + nz), or ny = n4. In other words, the n;’s are
correlated and calculated x? distribution differs from the
theoretical distribution. On the other hand, if we choose
T = 2, the correlations between successive numbers (on
the scale of the bin size of 0.25) are completely lost. This
is clearly seen in Fig. 4.

The preceeding discussion demonstrates that because
of positive Lyapunov exponent of the LOGMAP, the cor-
relations between the successive numbers is diluted if 7
shifted numbers are used. Furthermore, the correlations
are completely washed away if 7 is large enough. For sin-
gle precision numbers, this would happen when 7 ~ 23.
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However, our tests seem to indicate that smaller values
of T are reasonably good.

V. SUMMARY AND CONCLUSIONS

Various tests on the series of numbers obtained from
the LOGMAP have been performed in this work. These
tests bring out certain peculiarities which have not been
noted before. We notice the following.

(1) The distribution test does not satisfy the central
limit theorem for 7 = 1. The correlations between suc-

FIG. 3. The plot of the x?
distribution, P(x?) vs x? for
the two-dimensional case. The

smooth curve is obtained from
the exact distribution, Eq. (9),
and the histogram is obtained

from the LOGMAP and RANMAR,
labeled appropriately. (a) For 4
bins, (b) for 64 bins, and (c) for
256 bins.

T T T T T L T T T T T T
4-Bins (2-dimension) (a)
Seque. 2-shift 8-shift RANMAR
N2 N N2 N2
0.25
02
0.15
0.1
0.05
0 Al 1 1 1
01 3 1 3
T T T T T T T T T T T T T
. o (b)
64-Bins (2-dimension)
4-shift 8-shift 12-shift RANMAR
N N N d
0.04
0.03
0.02
0.01
0

100
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l I '256—Bins, (2-dime;15ion) ' ' I I ( C)
4-shift 8-shift 12-shift RANMAR
0oz | ! L ! ! ]
Il ;
' 4 '1 1 k
0.015 | n ‘~ l‘
‘ I f ! “
‘ ‘ I |'l , l‘ FIG. 3 (Continued).
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001 | \ | ‘ .
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cesive numbers, which are known to exist, are probably
responsible for this. But for 7 > 2, the agreement with
the central limit theorem is excellent.

(2) The moment calculation confirms the result of the
distribution test. That is, the calculated moments agree
with their theoretical values, even for 7 = 1. The vari-
ances of these moments disagree with their theoretical
values for 7 = 1. However, for 7 > 4, the moments as
well as variances agree with the theoretical values. This
shows that the correlations between successive numbers
play a subtle role in moment calculation and removal of
these correlations (by 7 shifting) is essential.

(3) The x? tests show that for 7 = 1 the x? distribu-
tions systematically differ from the theoretical distribu-

, . .
20 . 30 40 50
l

FIG. 4. Average distance |dx;|
points as a function of the iteration 3.

between neighboring

tion. The agreement between calculated and theoretical
distributions is improved by increasing 7. Thus, one must
use 7-shifted numbers (with larger value of 7 for smaller
interval size) to obtain acceptable x? distribution.

We have not presented the results for other tests here.
However, these follow the same pattern as far as the 7
dependence is concerned. The 7 dependence of these re-
sults can be understood as follows. The numbers ob-
tained from LOGMAP are uniformly distributed in the in-
terval (0,1). Therefore, averages calculated using these
numbers [e.g., moments in case (2) above] agree with
the theoretical values. But the quantities that depend
on the correlations between successive numbers (slope of
the curves in distribution test, variance of moments, x?
distribution, etc.) do not agree with the theoretical pre-
dictions. As discussed in the preceding section, the corre-
lations between successive T-shifted numbers are reduced
because of a positive Lyapunov exponent of LOGMAP. In
particular, in Fig. 4 for single precision accuracy, the cor-
relations are completely lost if 7 > 23. Our calculations,
on the other hand, show that 7 ~ 10 already yields rea-
sonable results for distribution tests.

As for computer time, the LOGMAP is, for example,
slower than RANMAR. However, in the calculations where
PRNs are used, a relatively small fraction of time is
spent generating random numbers. Therefore, the rel-
ative slowness of the LOGMAP is not a big handicap. The
periodicity of LOGMAP introduces severe limitations con-
cerning its applicability. One could overcome these by
starting with large number of seeds z¢’s. An advantage
with this procedure is that correlations between succes-
sive numbers are automatically removed, as a result of
the positive Lyapunov exponent of LoGMAP. Thus, even
if one begins with a large number of z(’s close to each
other, within a few tens of iterations, the correlations be-
tween z;’s are lost. Also, this procedure is particularly
useful for vector and/or parallel processing machines.
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To conclude, we note that the 7-shifted LOGMAP satis-
fies some of the elementary tests a pseudorandom-number
generator must pass. The LOGMAP being based on a
physically chaotic process, with calculations where ran-
domness, as opposed to computer time, is important, it
is advantageous to use LOGMAP.
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